

I risultati del progetto di innovazione e ricerca per l'olio extra vergine di oliva dell'Alto Garda trentino

Agraria Riva del Garda in collaborazione con la Fondazione Edmund Mach e il patrocinio della Provincia Autonoma di Trento

Centro Congressi

Riva del Garda, 10 maggio 2019

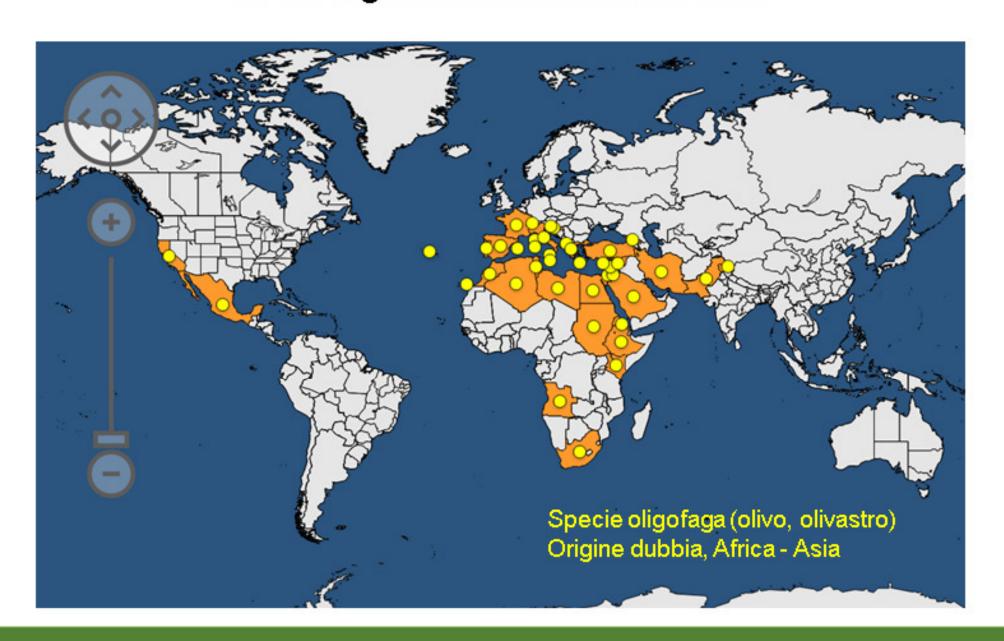
Identificazione dei genotipi di olivo che caratterizzano le produzioni dell'alto Garda trentino

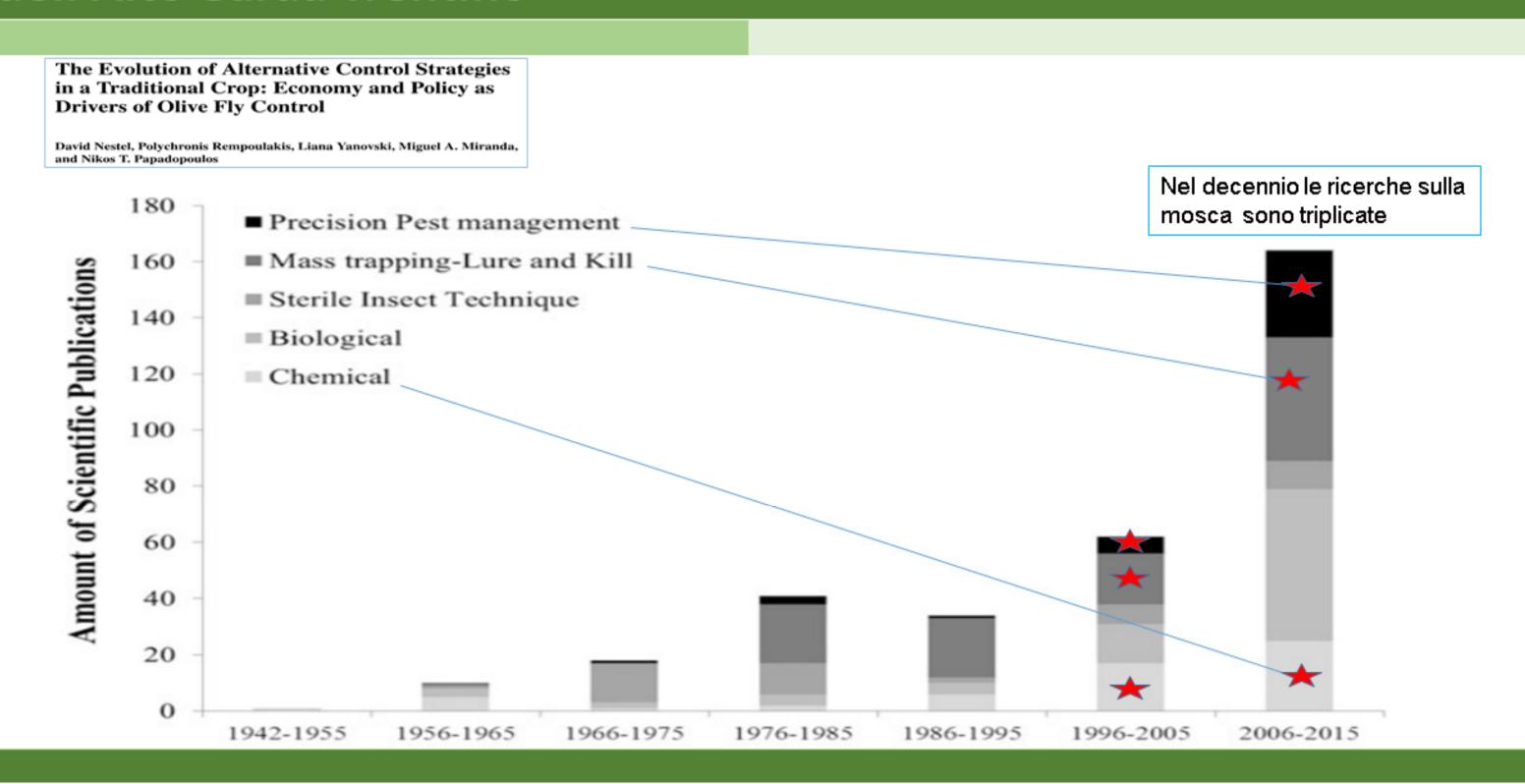
OR2 Protocollo di conduzione degli olivi con il minore impatto ambientale

OR3 Definizione di un protocollo di produzione per esaltare le caratteristiche nutrizionali e sensoriali dell'olio extra vergine di oliva di Casaliva prodotto nel Garda trentino

OR4 Carta di identità isotopica dell'olio extravergine di oliva del Garda trentino

OR2 Nuove conoscenze per una gestione innovativa della mosca delle olive (Bactrocera oleae)


«sviluppare una strategia di difesa efficiente, sostenibile ed ecologica per preservare l'oliva dall'attacco della mosca olearia rappresenta una delle condizioni per la tutela e valorizzazione dell'Olio Extravergine dell'Alto Garda Trentino»

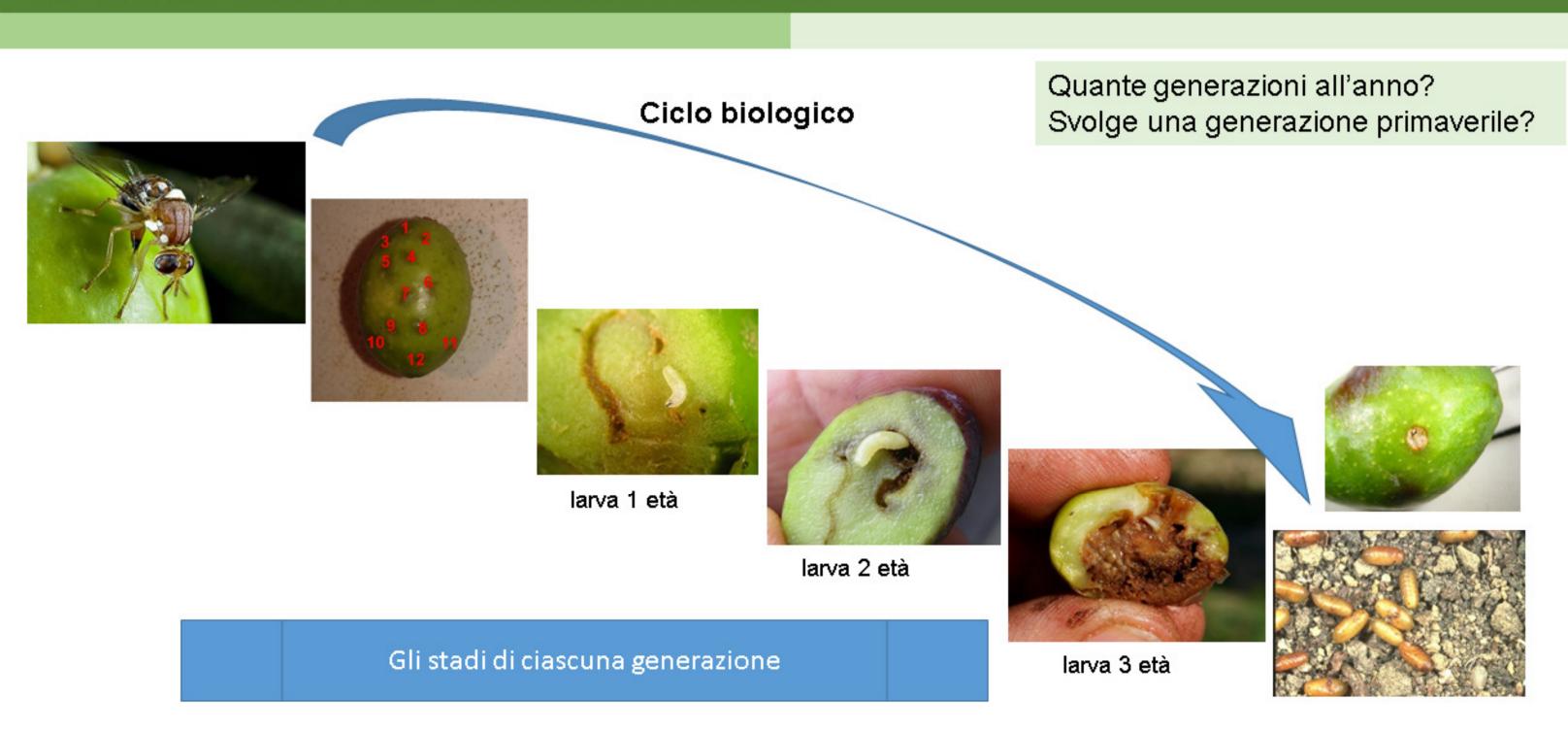


Bactrocera oleae - Attuale distribuzione – in AGT segnalata dannosa sin dal 1879

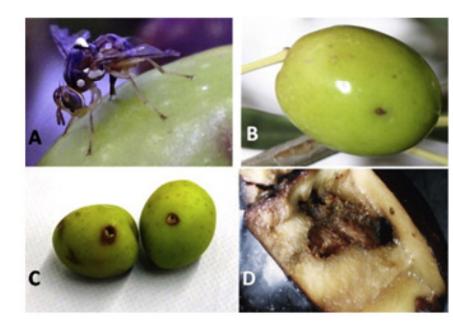
Fonte EPPO

Biologia e comportamento della mosca oleaira: Cosa è cambiato?

Piano di monitoraggio territoriale; valutati diversi dispositivi di trappole e inneschi; approfondimento sullo svernamento e ripresa attività;


Modello previsionale: applicazione di un modello matematico per prevedere le principali fasi di sviluppo della mosca;

Valutazione di sostanze attive: ricercare soluzioni alternative agli OP, insetticidi di nuova generazione e farine di roccia – in laboratorio (allevamento mosca) e campo;


Implementazione difesa con nuove biotecnologie: confronto di sistemi a base feromonale/alimentare-timing di applicazione;

Biologia e comportamento della mosca olearia

- Piano di monitoraggio territoriale; valutati diversi dispositivi di trappole e inneschi; 11 località dell'AGT;
- Approfondimento sullo svernamento invernale; indagate le forme di svernamento (pupe, adulti);
- Approfondimento sulla ripresa dell'attività primaverile; dinamiche di volo, ovideposizione, entità e ruolo delle popolazioni primaverili –

Cavedine, 418 m

Brozza, 228 m

Dro,124 m

Padaro, 338 m

Olivaia, 181 m

Arco, 92 m

Brione, 147 m

pendici Baldo, 335 m

Busatte, 180 m

Torbole, 83 m

				2			
Stazione	Loca Litra	Tre	Trappola tipo			Coordinate (fdec.)	
JEIDIE	ii.ca ii.a	eag r	Biog end	Decist re p	N	E	m
1	M.CA VEDINE	si	si	si	46,00 928	10,96 169	412
2	BPOZZA	si	si	si	45,97 257	10,93 542	228
3	DRO	si	si		45,96 095	10,91 245	124
	M.BRIONE nord	si		si	45,88 937	10,86 506	90
	M.BRIONE est/ovest	si			45,88 272	10,86 451	90
4	M.BRIONE centro	si			45,87 993	10,86 322	127
	M.BRIONE	si			45,87 93	10,86 293	14:
	M.BRIONE	si			45,27 29	10,86 284	147
· 5	TE MPESTA	si	si		45,83 599	10,25	93
6	TORBOLE	si	si	si	45,86 816	10,27 792	23
7	BUSATTE	si	si		45,26 652	10,88	120
8	M.BALDO	si	si		45,86 446	10,88 904	33 :
	OUVAIA	si	si		45,92 519	10,86 449	12 :
10	PA DA PO	si	si		45,93 146	10,86 75	332
11	ARCO	si	si		45,91 746	10,88	92

Trappole di monitoraggio - Rilievo del volo con trappole innescate (feromoni, esche proteiche, alimentari o miscele);

Modello
Cromotrap
Bac-Trap
Flypack

Bac-Trap (trappola forma a V- base colla), Cromotrap (tre pannelli base colla) e Flypack (trappola a cono, coperchio interno con 15 mg di deltametrina); Tre trappole in grado di attrarre maschi e femmine (cromotropiche gialle + attrattivo feromonale);

Cromotrap e Flypack integrate con sali di ammonio;

Dettagli – 22 trappole/inneschi per tipologia (2 ripetizioni /area); 2,5 m altezza, sud-ovest; rilievi settimanali; analisi ANOVA e Tukey-Kramer test.

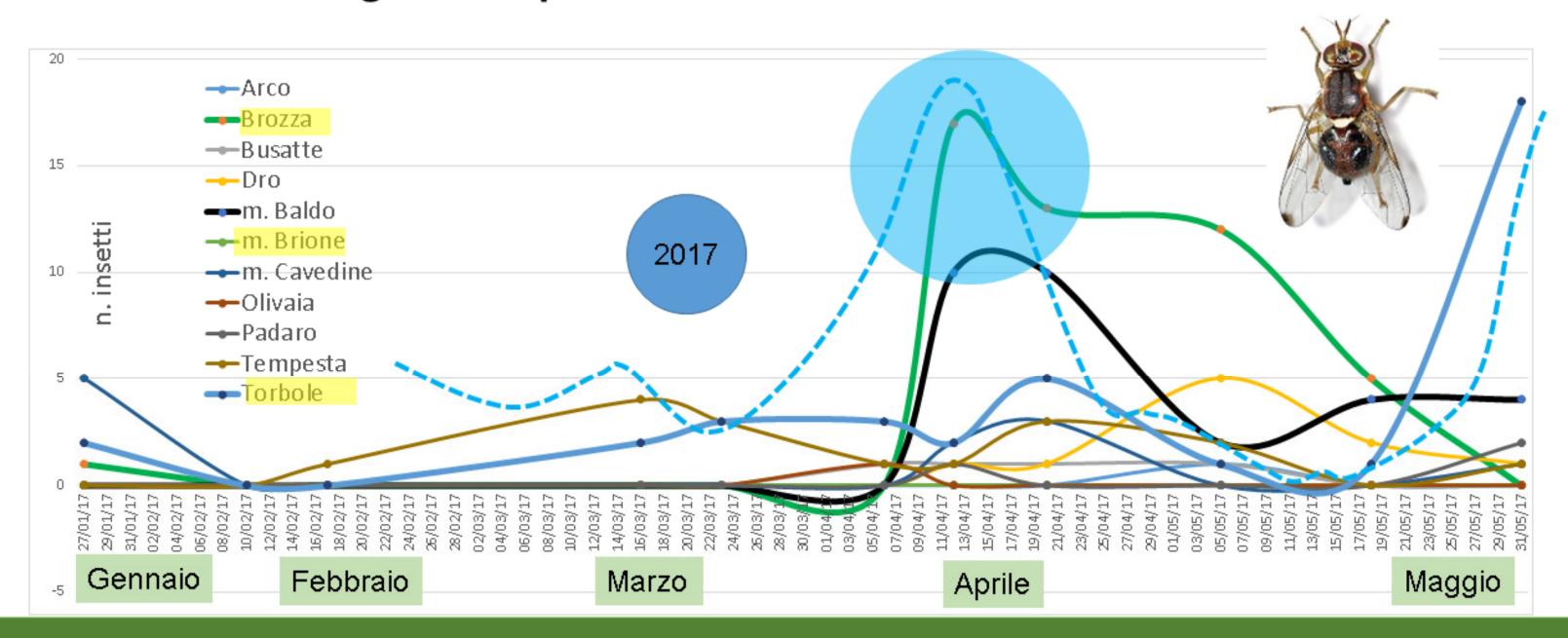
Catture adulti mosca con trappole di monitoraggio

Tabelle - Media catture/trappola/settimana - 2016 e 2017.

	Arco		93	Dro			Padaro		
Trap	Male	Female	Total	Male	Femal e	Total	Male	Femal e	Total
Bac-Trap	5.2 a*	0.6	5.9 a	23.7 a	2.6 b	26.4	5.6 a	1.1	7.1 a
Cromotrap	2.0 b	0.8	2.8 b	20.8 b	6.0 a	26.8	3.8 b	1.3	5.3 b

		Busatte		Torbole		
Trap	Male	Femal	Total	Male	Female	Total
Flypack	2.3 a*	2.1 a	4.4 a	3.1 a	2.1 a	5.1 a
Cromotrap	0.5 b	0.5 b	D.9 b	1.0 b	0.3 a	1.2 b
Bac-Trap	0.0 b	0.0 b	0.0 c	0.0 c	0.1 b	0.1 c

^{*}Values followed by different letters are significantly different. Tukey's HSD, p<0,05.

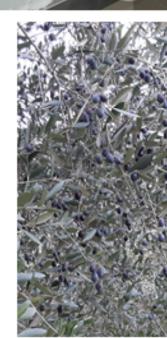

Risultati

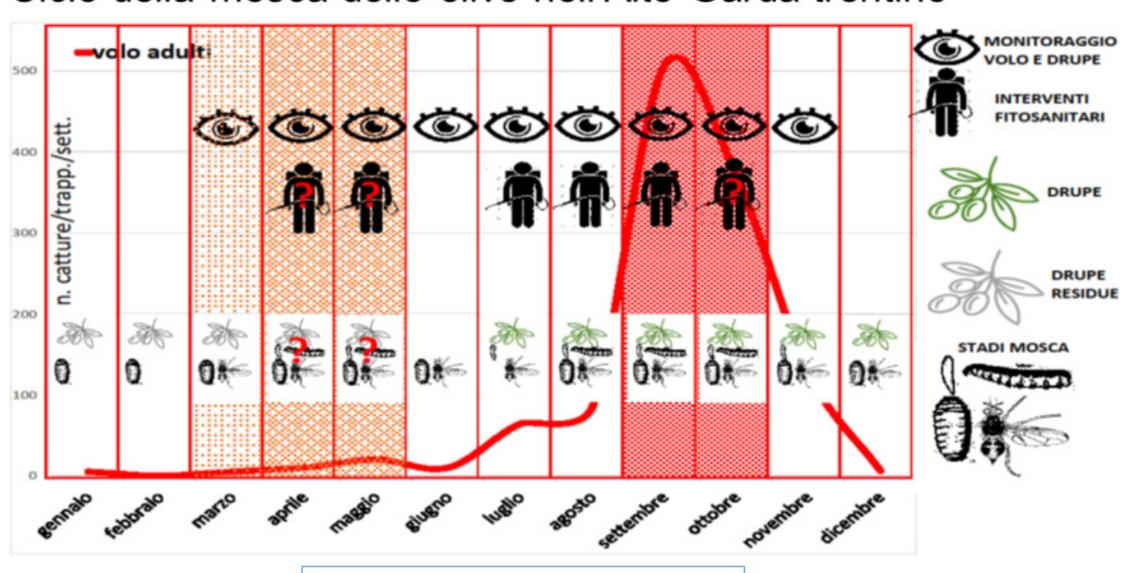
Bac-Trap, Cromotrap e Flypack sono i modelli risultati più affidabili nel monitoraggio degli adulti di mosca olearia; Valutazione ...anche in relazione a selettività di cattura, persistenza d'azione, praticità d'uso

Entità e ruolo degli adulti primaverili — Rilevante volo adulti nel 2016, 2017 e 2019

.... alcune considerazioni sugli adulti di mosca

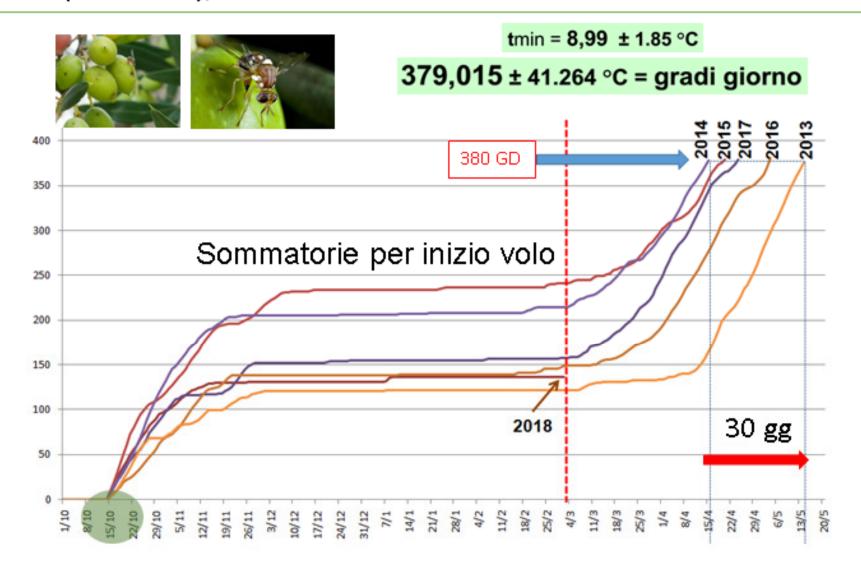
- Molto longevi (alcuni mesi);
- Attività di volo con temperature > 13°C e di riproduzione >16°C;
- Il periodo di volo è risultato più ampio nelle aree di fondovalle e limitrofe al lago (marzo-novembre) dove il clima mite consente, talvolta, di superare l'inverno;
- In collina e nelle aree interne si registrano le prime catture più tardivamente;
- Da aprile a maggio possibili voli dal fondovalle alla collina per la ricerca di frutti su cui deporre (anche km);
- Quale ruolo per le popolazioni primaverili?


Entità e ruolo degli adulti primaverili - Primavera 2017 - Sfarfallamento mosca dalle drupe rimaste in pianta (non raccolte)


raccolta	area	olive residue	n. olive	n. pupe	n. sfarfallati
16/03/2017	Brione+Torbole+Busatte	pianta	157	0	0
	Brione	pianta	300	0	0
	Busatte	pianta	173	0	0
23/03/2017	Torbole	pianta	131	0	0
	Busatte	pianta	182	/2	1M + 1F
06/04/2017	Brione	pianta	35	4	1M + 3F
	Arco	pianta	198	1	1M
	Brione	pianta	40	1	11-
05/05/2017	S. Giacomo Riva	pianta	59	/ 26	6M + 10F
	Curva Carozel	pianta	108	2	1 F
	Massone	pianta	71	5	3M + 1 F

Possibile una generazione parziale sulle olive non raccolte / ovideposizione fra Aprile e Maggio

Ciclo della mosca delle olive nell'Alto Garda trentino



 servirà Gestire la 1° generazione attività in corso (primavera 2019)

wp2 - Modello previsionale: applicazione di un modello matematico per prevedere le principali fasi di sviluppo della mosca (inizio volo primaverile, inizio ovideposizione);

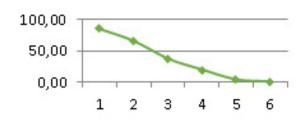
Strumento di supporto alle decisioni tecniche

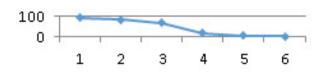
- Il «modello, basato sui gradi giorno» prevede il manifestarsi delle fasi salienti del ciclo di mosca olearia (relazione fra sviluppo biologico della mosca e sommatoria delle temperature/orarie al di sopra dei 9° C, a partire dal 15 di ottobre;
- Lo strumento potrà essere utile soprattutto a prevedere in primavera i momenti di inizio volo e di infestazione nelle drupe residue;
- Strumento utile per applicare una «Difesa intelligente», ottimizzando gli interventi di difesa, qualunque essi siano.

WP 3

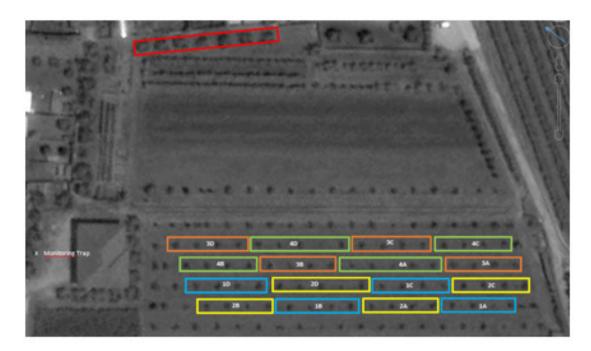
Valutazione di sostanze attive: ricercare soluzioni alternative agli Organofosfati insetticidi a bassa tossicità e bio-insetticidi (farine di roccia) – in laboratorio e oliveto;

- screening di formulati insetticidi in laboratorio (valutata azione di contatto e per ingestione);
- Valutazione polveri di roccia in laboratorio e pieno campo;
- Obiettivo: eliminare l'utilizzo di insetticidi con forte impatto tossicologico e ambientale, proponendo bioinsetticidi meno impattanti, utilizzabili anche nel biologico e in aree sensibili (ambienti urbani ecc).





te si	concentrazione	mortalità%
1	2,5 x	85,71
2	X	66,10
3	0,1x	37,29
4	0,01x	19,35
5	0,001x	3,39
6	testimone non trattato	0,00


Spinosad x ingestione mortalità 48 h

Spinosad x contatto - mortalità

Valutazione bio-insetticidi in campo (farine di roccia) (2017-2018 Arco)

	Attiva	Olive con	Peso	Fruit
Prodotto	infestazion e	danno	frutti	hardness
	(%)	(%)	(g)	(kg/cm ²)
Untreated	9,0	81,2 a*	3,0	1,5
Surround (5 kg/hl)	4,8	6,3 b	2,8	1,6
Gealitho (6-8 kg/ha)	9,5	8-3 b	2,8	1,8
Manisol (4 kg/hl)	5,4	2,0 b	2,7	1,8
Danadim 400 (0,1 l/hl)	2,0	2,0 b	2,9	1,8

INSETTICIDI DI INTERESSE

Acetamiprid ovo-larvicida

Epik 200 ml/hl

Spinosad adulticida

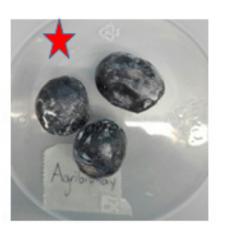
Laser 30 ml/hl

> Spinetoram adulticida

Delegate 75 g/ha

Piretro

Pyganic 200 ml/hl

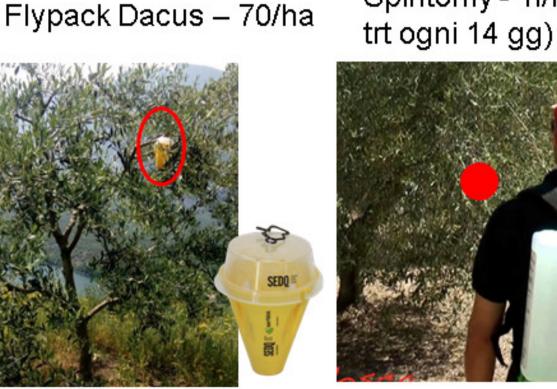

ovicida

BIO-INSETTICIDI TESTATI

- > Zeoliti
- Caolino
- Rame micronizzato
- Nessuno ha effetto sulla mortalità degli adulti
- Interferisce sulla ovodeposizione
- Taluni imbrattano la drupa

WP4 - Difesa con sistemi biotecnologici

- testati su ampie superfici (12 ha) formulati attrack and kill e di cattura massale



WP4 - Difesa sostenibile con sistemi biotecnologici (2016-17-18-19)

- meccanismo d'azione Mass trapping Lure & kill
- soluzioni disponbili sul mercato o in corso di registrazione
- da soli o in strategia

Ecotrap - 150/ha

Spintorfly - 11/ha in 4 I H2O,

Dacus trap 100/ha

Applicazione ½ giugno - A = Spintor Fly; 3,6 ha, B = FLYPACK; 3,00 ha, C = ECOTRAP; 3,8 ha
3 sub-parcelle/tesi

n.piante olivo	Flypack	B.oleae	B.oleae 😲	Tot cattura mosche	Flypack media catture	H.halys
599	221	1022	956	1978	9,0	10

SEDO S

OR2 - Difesa sostenibile con sistemi biotecnologici

Tesi	Infestazione olive (%)					
1031	lug	ago	sett	ott		
Flypack [®] Dacus	0,0 a*	0,0 a*	0,0 a*	0,0 a*		
Spintorfly	0,0 a	1,3 a	0,0 a	1,3 a		
Ecotrap	0,0, a	0,0 a	0,0 a	1,3 a		
Testimone	15,3 b	21,7 b	14,3 b	48,3 b		

Trattamento (dose/ha)	2016	2017	2018
Non trattato	48,5 a**	42 a	24,6 a
Eco-trap (100 t)	7,1 bc	1,3 b	2,7 bc
Spintor Fly (1 L)	4,9 c	1,7 b	-
Flypack (70 t)	-	0,8 b	5,1 bc

* P < 0,05, Tukey test

2017

- In estate i tre sistemi si equivalgono (da considerare persistenza d'azione, praticità d'uso, selettività di cattura, costo)
- Migliori risultati in caso di medio-basse popolazioni e con applicazioni ripetute negli anni.
- Per un buon risultato d'azione è necessario una applicazione su ampi territori (necessaria un'azione coordinata fra produttori)
- Due dei prodotti sono registrati uno è in arrivo (2019 o 2020)

Hanno collaborato

- Franco Michelotti
- Mario Baldessari
- Massimo Mucci
- Serena Chiesa
- Sofia Monica

Fulvio Mattivi

Tecnici di Agraria Riva...... e olivicoltori dell'Alto Garda